噪聲對策的基礎(chǔ)——片狀三端子電容器
繼上回的片狀鐵氧體磁珠之后,這次我們將為大家?guī)砥瑺钊俗与娙萜鞯慕榻B。
引線型陶瓷電容器
在介紹片狀三端子電容器之前,最好先了解一下引線型三端子電容器。這有助理解片狀三端子電容器的內(nèi)容。
圖1為普通的引線型陶瓷電容器(二端子)結(jié)構(gòu)。
在單板的電介質(zhì)兩側(cè)涂上電極,再安裝上引線端子即構(gòu)成引線型陶瓷電容器結(jié)構(gòu)。由于其引線端子部分帶有微小的電感(殘留電感),因此在作為旁路電容使用時,會與地面產(chǎn)生電感。
圖2是將電容器作為旁路電容使用時的插入損耗特性示例。在插入損耗圖中,越往下干擾越小。由于電容器的阻抗隨著頻率的增大而增大,因此在高頻范圍內(nèi),插入損耗也應(yīng)該如圖中虛線所示,逐漸增大。然而,如上所述,由于電容器在實(shí)際使用中帶有殘留電感,因此會產(chǎn)生干擾,降低頻率性能,故表現(xiàn)出如實(shí)線所示的V字型插入損耗曲線。
三端子電容器單側(cè)引出2根引線
三端子電容器是為改善二端子電容器的高頻特性而對引線端子的形狀進(jìn)行改進(jìn)后形成的陶瓷電容器。如圖3所示,三端子電容器在單側(cè)引出兩根引線端子。將兩根引出的引線分別連接至電源和信號線的輸入、輸出端,將相反一側(cè)接地,即可形成如右圖所示的等效電路圖。通過這種連接方式,兩根引線側(cè)的引線電感將不進(jìn)入大地側(cè),由此可極大地減小接地電感。此外,由于兩根引線側(cè)的引線的電感作用類似T型濾波器的電感,能夠起到降低干擾的作用。
片狀多層陶瓷電容器與片狀三端子電容器
目前所使用的電容器多為片狀多層陶瓷電容器。圖4為二端子片狀多層電容器的結(jié)構(gòu)概念圖。其結(jié)構(gòu)表現(xiàn)為,夾著電介質(zhì)薄片,分別與兩側(cè)外部電極連接的內(nèi)部電極交錯層疊。由于其為片狀結(jié)構(gòu),且無引線,因此該部分沒有殘留電感。然而,由于其內(nèi)部還存在微量電感,因此在較高頻率下將導(dǎo)致性能下降。
與引線型的三端子電容器一樣,三端子電容器也可通過改變電極結(jié)構(gòu)提高高頻性能。圖為片狀三端子電容器的結(jié)構(gòu)概念圖。在芯片兩端接地,夾住電介質(zhì),使貫通電極與接地電極交互層疊,從而形成類似于穿心電容器的結(jié)構(gòu)。等效電路如圖所示,貫通電極的電感與其在引線型三端子電容器中的情況一樣,起到類似于T型濾波器的電感的作用,因此可減小殘留電感的影響。此外,由于接地端連接距離較短,因此該部分的電感也非常微小。并且,由于接地端連接兩端,因此呈并聯(lián)連接狀態(tài),電感也將降低一半。
圖6中對片狀三端子電容器與片狀二端子多層電容器的插入損耗特性進(jìn)行了比較。兩種元件的靜電容量相同,因此在低頻范圍內(nèi)特性相同。但是二端子電容器在頻率超過10MHz后性能便開始下降,而三端子電容器則在超過100MHz后才會出現(xiàn)性能下降。由于片狀三端子電容器在一定程度的高頻范圍內(nèi)都不會出現(xiàn)性能下降,因此它適用于需要去除高頻干擾的情況。
片狀三端子電容器實(shí)際為四端
如圖5所示,片狀三端子電容器雖名為三端,但實(shí)為四端結(jié)構(gòu)。這是因?yàn),雖然四端設(shè)計(jì)可減少接地端電感,但電氣特性方面,無論哪個端子都具備相同電位。而引線型三端子電容器原本就為三端結(jié)構(gòu),因此貼片化后仍被稱為"三端"。
片狀三端子電容器的安裝方法
片狀三端子電容器具貫通端子與接地端子,因此與普通的二端子電容器相比,安裝方法有所不同。圖7為安裝示例。
將片狀三端子電容器作為旁路電容器安裝時,應(yīng)在切斷信號或電源模式后,在其間連接上貫通電極,并在接地端子處準(zhǔn)備好接地模式進(jìn)行連接。為保持阻抗處于較低水平,必須盡量將接地模式短距離連接在穩(wěn)定的接地層上。使用雙面板與多層板時,推薦以通孔連接至接地層。
編輯:admin 最后修改時間:2017-12-13